CSCI 2132: Software Development
Lab 9: Make and GDB

Synopsis

In this lab, you will:

* Learn to compile a multi-file program using make.
* Learn to use the gdb debugger to find bugs in your code.

Contents

L 1T C] 15 2
The Story: Computing SKYIINESiiietiiiiieee ettt e e ee ettt iaaaeeseaeanannnns 3
Step 1: Organizing the COUe. . uuuiiiiiiiii ittt ittt ettt et eeeeeeeens 4
Step 2: Using make to build the COde......ooiiiiiniiiiit i et e iiiaa e e e aeans 8
Step 3: A more comprehensive Makef il . . oo i e 10
STEDP 4t TEST JOUT COUE ettt ettt ettt ettt et e ettt e e e et e et e e atee e e saaaeeeeeaaanns 14
ST 0 I TR i - €70 6 B oo Yo [16
Step 6: ANOther SUDLIE DU ceeei e e e et 24
Step 7: COMMIL YOUT WOTK .+t tttttttttitittitt ettt ittt ettt et e e et et eeaeeeeeeeeeens 25

Overview

In this lab, you will use the make tool to make compiling programs consisting of multiple source files
much easier. You will use such a program with some bugs in it to practice using gdb to locate these bugs.

The Story: Computing Skylines

The narrative that will guide today’s lab is that we want to compute the skyline of a 2-dimensional
point set. As a motivating example, consider that there is a rock concert in town and you want to help
concert-goers to choose the hotel they will stay at after the concert. Our concert-goers are not very
demanding in terms of the services the hotel offers, but given that the concert tickets were rather pricey,
they do not want to spend all that much money on the hotel, and they also want to be able to get back
to the hotel quickly after the concert, so distance from the concert venue also matters.

For each candidate hotel you may want to offer to the concert-goers, you know its distance from the
concert venue and the nightly rate for a standard room. Now, if hotel A is closer to the conert venue
than hotel B and hotel A is also cheaper than hotel B, then none of the concert-goers will be interested
in booking hotel B; hotel B is simply not a reasonable choice. However, if hotel A is closer to the concern
venue than hotel B but hotel B is cheaper than hotel A, then you cannot easily decide which hotel a
given concert-goer will prefer: low price may be more important than distance for some while others
may prefer to pay a little more if this allows them to stay closer to the concert.

If you represent each hotel H as a point py; = (xy, yy), where x}; is the distance from the concert venue
and yy is the price, a point p, is said to dominate another point pj if both x, > x5 and y, = yg. In this
case, hotel A is of no interest to the concert-goers. Given a set of candidate hotels, you want to select the
set of hotels that are not ruled out by this condition. This set of candidate hotels is the skyline of the
point set corresponding to all hotels, where the skyline of a point set P is the set of points in P that do
not dominate any other point in P. An example is shown in the following figure. The skyline points are
red. Non-skyline points are black. It is easily checked that no skyline point dominates any other point
and each non-skyline point dominates at least one skyline point.

Here is a simple algorithm to compute the skyline of a point set: First sort the points by increasing
x-coordinates; break ties by increasing y-coordinates. Then add the first point in the sorted sequence to
the skyline and store its y-coordinate in a variable y,;,. For every subsequent point p = (x, y), add p to
the skyline if y < y.;,; otherwise, do not add it to the skyline. If you add p to the skyline, also update
Ymin = Y- You should follow this strategy on the figure above to verify that this does indeed compute the
skyline of the point set (the red points). For your convenience, the points are numbered in the order the
algorithm inspects them.

Step 1: Organizing the code

You should implement the function for computing the skyline of a point set as a library function that
can also be used by other programs that need to solve this problem. Thus, you place your skyline
implementation into a file skyline.c and declare a prototype of the skyline function in a file skyline.h
that can be included by any program that wants to use your skyline function. You also write a test
program that can be used to test the correctness of the skyline function. You put this test code into a file
test_skyline.c. Finally, the point representation you use is something that could be useful in completely
different programs that work with point sets, so you should implement the point representation in its
own header file point.h. In summary, you will have the following four files. Create these files with the
exact content shown here. Do not correct any mistakes in them that may be obvious to you; these are
the mistakes you will find using gdb later in this lab.

point.h

#ifndef POINT_H
#tdefine POINT_H

typedef struct {
float x, y;

} point_t;

#endif // POINT_H

skyline.h

#ifndef SKYLINE_H
#define SKYLINE_H

#include <point.h>

// Compute the skyline of a point set.

//

// Input:

// - points: pointer to an array of points

// - n: pointer to an integer storing the number of points
//

// Output:

// - The integer referenced by n stores the number of points in the skyline.
// - The points in the points array are rearranged so that

// - The skyline points are the first n points,

// - The skyline points are sorted by their x-coordinates,

// - The non-skyline points appear from position n onwards, in no particular
// order.

void compute_skyline(point_t *points, size_t *n);

#endif // SKYLINE_H

In the following implementation file skyline.c, the #include <skyline.h> statement is technically
not needed. However, it is good practice to always include the header file in the corresponding imple-
mentation file because it allows the compiler to check that the declaration of each function in the header
file matches its definition in the implementation file.

skyline.c

#include <stdlib.h>
#include <skyline.h>

int xy_cmp(const void *p, const void *q) {
const point_t *pp = p; const point_t *qq = q;
if (pp->x == gg->x) return (pp->y == qq->y) ? @ : ((pp->y > qq->y) ? 1 : -1);
else return (pp->x > qg->x) ?2 1 : -1;

void point_swap(point_t *p, point_t *q) {
point_t tmp = *p; *p = %q; *q = tmp;

3

void compute_skyline(point_t *points, size_t #*n) {
size_t m;
float y_min;

gsort(points, *n, sizeof(float), xy_cmp);
y_min = points[@].y;
for (int i =m=1; i < *n - 1; ++i) {
if (points[i].y < y_min) {
y_min = points[i].y;
point_swap(points + i, points + m++);

*Nn

1l
3

Your test code will not perform any verification of its input. That’s okay because you use it only as a test
harness, not in a production environment.

test_skyline.c (1/2)

#include <stdio.h>
#include <stdlib.h>
#include <skyline.h>

int main(int argc, char *xargv) {
int result = 0;

size_t nin = 0; size_t nout = 0;

size_t incap = 8; size_t outcap = 8;

point_t *input = malloc(incap * sizeof(point_t));
point_t *output = malloc(outcap * sizeof(point_t));
point_t p;

if (argc != 3) exit(2);
FILE *in fopen(argv[1], "r");
FILE xout = fopen(argv[2], "r");
if (in && out) {
while (fscanf(in, "%f%f", &p.x, &p.y) == 2) {
if (nin == incap) {
incap *= 2;
input = realloc(input, incap * sizeof(point_t));

}
input[nin++] = p;
}
while (fscanf(out, "%f%f", &pd.x, &p.y) == 2) {
if (nout == outcap) {
outcap *= 2;
output = realloc(output, outcap * sizeof(point_t));
}
output[nout++] = p;
}
compute_skyline(input, &nin);
if (nin == nout) {
for (int i = @; i < nin; ++i) {
if (input[i].x !'= output[i].x || input[il.y !'= outputl[i].y) {
fprintf(stderr, "Wrong outptu point at position %d: "
"expected (%f, %f), found (%f, %f)\n",
i, output[i].x, outputl[il.y, input[i].x, inputl[il.y);
result = 1;

}
} else {
fprintf(stderr, "Wrong output size: expected %lu, found %lu\n”,
nout, nin);
result = 1;

Step 2: Using make to build the code

This project is still small enough that you could recompile all the files in it as needed to rebuild the
program every time you change the C code. With bigger projects, this gets tedious. In addition, one
advantage of splitting the input into multiple source files is that you do not need to recompile the whole
source when changing only one file. You only need to recompile the files that have changed or depend
on a changed file. A Makefile allows you to specify these dependencies using build rules. Each such
rule specifies

Target: the file to be produced using this rule.
Prerequisite(s): the files that are needed as input to this rule to produce the target.
Recipe: the steps to be executed to produce the target from the prerequisite(s).

The make tool reads the Makefile and decides which targets to recompile and in which order, based on
the following rules:

o If the target of a rule is older than any of the prerequisites of the rule, the rule is applied.

* If a prerequisite of a rule is the target of another rule, then that other rule is applied first to produce
the target if necessary.

In your project, you have the following dependencies. The output program test_skyline is produced
from the compiled object files test_skyline.o and skyline.o. As a Makefile rule this looks like this:

test_skyline: test_skyline.o skyline.o
gcc -o %@ $°

Pay attention: the indentation of the recipe gcc ... must be achieved using a tab character, not
using spaces!

For this rule, test_skyline is the target, test_skyline.o and skyline.o are the prerequisites, and
gcc -o $@ $* is the recipe. You could have written gcc -o test_skyline test_skyline.o skyline.o
as the recipe. However, if you ever change the target or sources of the rule, you would then also have to
change the recipe. Instead, you use two special variables available in every Makefile recipe: $@ always
expands to the target of the current rule, $* expands to the list of prerequisites of the current rule. There
is a third special variable, $<, which expands to only the first prerequisite. You will use this one soon.

Now, the skyline. o file needed by this rule is produced by compiling skyline.c. Are there any other files
that may require you to recompile skyline.c? Since skyline.c includes both point.h and skyline.h,
it is wise to recompile it every time one of the three files skyline.c, point.h or skyline.h changes.
You express this using the following rule:

skyline.o: skyline.c skyline.h point.h
gcc -c $<

This says that skyline.o can be produced by compiling skyline.c. (Remember, $< refers only to the
first prerequisite.) However, by listing skyline.c, skyline.h, and point.h as prerequisites, skyline.o
is recreated every time one of these three files is changed.

test_skyline.o has similar dependencies:

This gives your first Makefile for your project:

You can now (try to) build the program using

This failed because you have not told gcc where to find skyline.h. You will fix this in the next step.

Step 3: A more comprehensive Makefile

make and gcc are designed to work very well together. For example, gcc can automatically generate the
set of prerequisites that each target depends on and then this list of dependencies can be included in the
Makefile. This is where the true power and convenience of Makefiles start to become apparent, but
it is also well beyond the scope of an introductory course such as CSCI 2132. You are encouraged to
search the web for collected wisdom of advanced usage of make. Here, you will at least explore some
more common patterns often used in Makefiles.

First, observe that the rules for skyline.o and test_skyline.o are essentially identical: the recipe is
the same and each rule produces a file XXX. o from a file XXX. ¢ and files skyline.h and point.h. Make’s
pattern syntax allows you to replace these with a single rule:

%.0: %.c skyline.h point.h
gcc -c $<

Next, you make sure that gcc uses the right flags to compile your code correctly. The two rules for
test_skyline and %.o both use gcc but in different roles. The test_skyline rule uses only the linking
phase of gcc because its input consists only of already compiled object files. The behaviour of the linker
can be controlled using command line flags. More complex Makefiles often have many rules in them,
so it is good practice to defined these flags as a variable and then use this variable in every rule that uses
gcc as a linker. The link flags are commonly stored in a variable LDFLAGS, but this is only convention;
any name is fine. For now, modify your Makefile as follows:

Makefile
LDFLAGS=

test_skyline: test_skyline.o skyline.o
gcc $(LDFLAGS) -o $@ $+

%.0: %.c skyline.h point.h
gcc -c $<

Currently, there are no special LDFLAGS, but this will change soon.

Similarly, the preprocessor and the compilation stage can be influenced by their own flags. It is common
to store these in a variable CFLAGS. Here, you need to fix two problems: Currently, the preprocessor does
not find the skyline.h file because it is not stored in a “system location”. You can add to the search path
of header files using the -I flag. Here you want to add the current directory, using the option “~I.”. The
other flag you need to set chooses the C standard. You want C99 here, so you can define loop variables
in a for-loop. This gives the following updated Makefile:

10

Makefile

CFLAGS=-std=c99 -I.
LDFLAGS=

test_skyline: test_skyline.o skyline.o
gcc $(LDFLAGS) -o $@ $~

%.0: %.c skyline.h point.h
gcc $(CFLAGS) -c $<

Finally, you want to add a few convenience targets. The first two, all and clean are fairly common. All
of these are what make calls “phony targets”. The corresponding rule is invoked every time you build
this target no matter whether a file with the same name exists and is newer than the rule’s prerequisites.
To declare a target phony, you use the following syntax:

.PHONY: all clean testl test2 test3

The all target is usually the first target in a Makefile to ensure that make and make all behave the
same and simply build all real targets in the Makefile. Here, you have only one real target to build,
namely test_skyline, so you add this as a dependency for all and do not specify any recipe for the
rule because there is nothing to be done to build the all target; the only point of the rule is to ensure
that all’s dependencies are built if they are out of date:

all: test_skyline

The clean target deletes all files that are not source files. A common pattern to obtain a “clean build” by
recompiling everything from scratch is to use make clean && make all. The rule for the clean target is

RM=rm -f
OBJFILES=test_skyline.o skyline.o

clean:
$(RM) test_skyline $(OBJFILES)

The use of rm -f is important here because it prevents rm from failing if the file to be deleted does not
exist. By storing the object files to be deleted in a variable OBJFILES, you can use the same variable to
specify the dependencies of test_skyline:

test_skyline: $(OBJFILES)
gcc $(LDFLAGS) -o $@ $~

Finally, you create three more targets test1, test2, and test3 so you can run your program on three
standard test instances using make test[123]:

11

Your final Makefile should look like this now:

Try to run

$ make all

gcc -std=c99 -I. -c test_skyline.c

gcc -std=c99 -I. -c skyline.c

gcc -o test_skyline test_skyline.o skyline.o
$ make all

make: Nothing to be done for ‘all'.

$ touch skyline.c

$ make all

gcc -std=c99 -I. -c skyline.c

gcc -o test_skyline test_skyline.o skyline.o
$ make clean

rm -f test_skyline test_skyline.o skyline.o

$ make all

gcc -std=c99 -I. -c test_skyline.c

gcc -std=c99 -I. -c skyline.c

gcc -o test_skyline test_skyline.o skyline.o

and observe how the second make all does not recompile anything because all files are up-to-date.
The third make all compiles skyline.c and then produces test_skyline but does not compile
test_skyline.c. The reason is that touch skyline.c gave skyline.c a new time stamp, so it is
now newer than skyline.o and make correctly triggers the rule to build skyline.o from skyline.c,
which in turn triggers the rule to rebuild test_skyline from test_skyline.o and skyline.o because
skyline.o is now newer than test_skyline. make clean deletes all the object files, so the fourth and
final make all has to rebuild all files skyline.o, test_skyline.o, and test_skyline from scratch.

make helpfully prints the sequence of steps it performs, which can be very useful when debugging
Makefiles. This output can be suprressed by running make -s (silent).

13

Step 4: Test your code

First create some test instances. The six input and output files referenced in your Makefile rules in
Step 3 should look like this:

Create these files and then run your first test:

14

$ make testl

./test_skyline inputl.txt outputl.txt
Wrong output size: expected 5, found 1
make: **x [test1] Error 1

Hmm, this did not go as expected. The computed skyline has only one point but the expected output has
5 points.

15

Step 5: Fix your code

Next, you will practice using gdb to find the error. To this end, you have to prepare your code appropriately.
In particular, you have to ensure that the compiler includes source code information in the program it
produces. The -g flag does this if it is provided to both the compiler and the linker. gdb uses this source
code information to help you interact with your code (e.g., refer to specific lines in the source code).
Edit your Makefile so the first two lines look like this:

CFLAGS=-std=c99 -I. -g
LDFLAGS=-g

This ensures that both the compiler and the linker are run with the -g flag. Now recompile your code:

$ make clean && make all

rm -f test_skyline test_skyline.o skyline.o
gcc -std=c99 -I. -g -c test_skyline.c

gcc -std=c99 -I. -g -c skyline.c

gcc -g -o test_skyline test_skyline.o skyline.o

Now you should normally systematically search for the spot in your program where things start to go
wrong. To narrow your search, you consult the oracle this time and she tells you that the compute_skyline
function is the one that’s misbehaving. So, the first thing you do is inspect this function’s output. You
could use printf-style debugging as discussed in class. Here, you will practice using a debugger, gdb.
Load your program into gdb using

$ EDITOR=emacs
$ gdb test_skyline

The EDITOR=. .. line tells gdb (and other programs started from the shell) that you want to use emacs
as your editor whenever an editor is needed. This will become important later because you will edit and
recompile your code without quitting gdb.

As a first exercise, run your program from within gdb. The command to do this is

(gdb) run inputl.txt outputl.txt

(gdb) is the prompt gdb presents to you, in order to distinguish this from a standard shell prompt. The
command essentially says: Run whichever program was loaded either as a command line argument when
starting gdb (as you did here) or using the file command of gdb and pass input1.txt and outputl.txt
as command line arguments to this program.

The output looks something like this:
Starting program: /users/faculty/nzeh/lab9/test_skyline inputl.txt outputl.txt

Wrong output size: expected 5, found 1
[Inferior 1 (process 27178) exited with code 01]

16

This tells you that gdb started your program and with which command line arguments. Then comes the
output of your program, just as when you ran it from the shell. Finally, gdb tells you that your program
exited with exit code 1.

Now, to find out what’s wrong with compute_skyline, you first want to inspect its output. To this end,
you need to set a breakpoint after the place where compute_skyline is called. A breakpoint is a location
in the program where the debugger stops the program every time this location is reached in the program’s
execution. This allows you to examine the contents of variables, execute individual steps one at a time
or simply resume the execution if you are satisfied with the current state of the program.

Type

(gdb) list main

and press enter until you see the line where compute_skyline is called. Set a breakpoint on the next
line number. If your code looks exactly as above, then this should be line 31:

(gdb) break 31
Breakpoint 1 at 0x40097c: file test_skyline.c, line 31.

Now start the program again:

(gdb) run inputl.txt outputl.txt
Starting program: /users/faculty/nzeh/lab9/test_skyline inputl.txt outputl.txt

Breakpoint 1, main (argc=3, argv=0x7fffffffe358) at test_skyline.c:31
31 if (nin == nout) {

This tells yout hat the program execution was interrupted at breakpoint 1, in line 31 of test_skyline.c,
which contains the code if (nin == nout) {. Now you can inspect the contents of variables:

(gdb) print nin

$1 =1

(gdb) print input[0]
$2 = {x =1, y = 2}

$1, $2, ... refer to the values you inspect, numbering them in order. So, for some reason, the size
of the computed skyline is 1, even though you expected all five input points to be in the skyline. More
worrisome is the fact that the one point in the computed skyline is the point (1, 2), which is not part of
the input at all!

So get ready to investigate where things go wrong. You set a breakpoint on the call to compute_skyline
itself:

(gdb) break 30
Breakpoint 2 at 0x400969: file test_skyline.c, line 30.

17

and then restart the program:

(gdb) run inputl.txt outputl.txt

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /users/faculty/nzeh/lab9/test_skyline inputl.txt outputl.txt

Breakpoint 2, main (argc=3, argv=0x7fffffffe358) at test_skyline.c:30
30 compute_skyline(input, &nin);

As a sanity check, inspect that the input looks as expected:

(gdb) print nin

$3 = 5

(gdb) print input[0]
$4 = {x =1, y = 8}
(gdb) print input[1]
$5 ={x =2,y =17}
(gdb) print input[2]
$6 = {x = 4, y = 5}
(gdb) print input[3]
$7 = {x =7, y = 2}
(gdb) print input[4]
$8 = {x =8, y = 1}

All is in order.

In order to inspect where compute_skyline misbehaves, step into the function using step:

(gdb) step
compute_skyline (points=0x603010, n=0x7fffffffe220) at skyline.c:17
17 gsort(points, *n, sizeof(float), xy_cmp);

This tells you that you are now inside the compute_skyline function at line 17 of the skyline.c file
and you are about to call gsort. You do not want to step into gsort because you can trust that its
implementation is correct (and you have no source code information available for it anyway). You want
to advance to the line after calling gsort and inspect the data at this point. You do this using step’s
sibling next. The difference is that step steps into the function call if the current instruction is a function
call. That is, it advances to the first instruction inside the function as above, where you stepped into the
compute_skyline function from the main function. next steps over the function call, that is, it advances
to the first instruction after the function call returns. This is what you want here:

(gdb) next
18 y_min = points[@].y;

As desired, you are now stopped at the next line after the call to gsort. Check again that the data is
still intact. It was sorted by x-coordinates before, so gsort should not have done anything to it.

18

(gdb) print *n

$9 =5

(gdb) print points[@]
$10 = {x =1, y = 2}
(gdb) print points[1]
$11 = {x =4, y =17}
(gdb) print points[2]
$12 = {x = 8, y = 5}
(gdb) print points[3]
$13 = {x =7, y = 2}
(gdb) print points[4]
$14 = {x =8, y = 1}

You still have 5 points but the first three points are not in the original input. Something got messed
up and it is the call to gsort that misbehaves, so have a closer look. Of course, you see the mistake
right away. You tell gsort that the element size is sizeof (float) but the array elements are points, so
gsort’s pointer arithmetic to access the elements to be sorted cannot work correctly.

Start emacs from within gdb by running

(gdb) edit

This conveniently opens emacs on the line where the program is currently stopped. Change the line
before it, which is the gsort invocation, to look like this:

gsort(points, #*n, sizeof(point_t), xy_cmp);

Then exit emacs, which puts you back at the gdb prompt and rebuild your program:

(gdb) make all
gcc -std=c99 -I. -g -c skyline.c
gcc -g -o test_skyline test_skyline.o skyline.o

For now, assume that this fixed all your problems (it didn’t). Delete the breakpoint at line 30 in order to
run the program until after the call to compute_skyline.

To delete a breakpoint, you need to refer to it by its number. If you do not remember these numbers,
you can get a list of all current breakpoints using

(gdb) info breakpoints

Num Type Disp Enb Address What
1 breakpoint keep y 0x000000000040097c in main at test_skyline.c:31
2 breakpoint keep y 0x0000000000400969 in main at test_skyline.c:30

Okay, so this was breakpoint 2. Delete it using delete:

19

(gdb) delete 2

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x000000000040097c in main at test_skyline.c:31

Only breakpoint 1 is left. Now restart the program:

(gdb) run inputl.txt outputl.txt

Again, answer y to the question whether you want to restart the program from the beginning. The
program once again stops on line 31. Inspect the output now:

Breakpoint 1, main (argc=3, argv=0x7fffffffe358) at test_skyline.c:31

31 if (nin == nout) {
(gdb) print nin
$15 = 4

Hmm, that’s better, but you have 5 input points and they should all be part of the skyline for this input.

Bring back the breakpoint on line 30, restart the program and step into the call to compute_skyline:

(gdb) break 30

Breakpoint 3 at 0x400969: file test_skyline.c, line 30.

(gdb) run inputl.txt outputl.txt

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /users/faculty/nzeh/lab9/test_skyline inputl.txt outputl.txt

Breakpoint 3, main (argc=3, argv=0x7fffffffe358) at test_skyline.c:30

30 compute_skyline(input, &nin);

(gdb) step

compute_skyline (points=0x603010, n=0x7fffffffe220) at skyline.c:17
17 gsort(points, *n, sizeof(point_t), xy_cmp);

Step over gsort again and check that your fix of gsort actually worked, something you should have
done before:

20

(gdb) next

18 y_min = points[0].y;
(gdb) print *n
$16 = 5

(gdb) print points[@]
$17 = {x =1, y = 8}
(gdb) print points[1]
$18 = {x = 2, y = 7}
(gdb) print points[2]
$19 = {x = 4, y = 5}
(gdb) print points[3]
$20 = {x = 7, y = 2}
(gdb) print points[4]
$21 = {x = 8, y = 1}

So far, so good.

So, given that you have the correct point set before the main loop of compute_skyline, something goes
wrong in the loop, at the very least with the manipulation of m. To investigate this, set three breakpoints,
one directly on the for-expression, another on the line that updates y_min, and a third on the line that
updates *n right after the loop. If you entered the code in Step 1 exactly, they are in lines 19, 21, and 25
of the file skyline.c:

(gdb) break 19
Breakpoint 4 at 0x400c4d: file skyline.c, line 19.
(gdb) break 21
Breakpoint 5 at 0x400c81: file skyline.c, line 21.
(gdb) break 25
Breakpoint 6 at 0x400cf3: file skyline.c, line 25.

By observing the order in which the program hits these breakpoints and the values of various variables
at each breakpoint, you will be able to figure out what goes wrong.

Continue the execution until you stop at the next breakpoint:

Continuing.

Breakpoint 4, compute_skyline (points=0x603010, n=0x7fffffffe220) at skyline.c:19
19 for (int i =m=1; i < *n - 1; ++i) {

Now you want to know the values of i, m, y_min, and the current point point[i] at each breakpoint.
Typing print to do so will become tedious. Use display instead, which ensures that these values are
shown every time the program execution stops.

21

You can force the re-display of all of these “auto-display” values at any time by simply typing

Now step through the next few breakpoints:

(gdb)
Continuing.

Breakpoint 5, compute_skyline (points=0x603010, n=0x7fffffffe220) at skyline.c:21
21 y_min = points[i].y;

4. points[i] = {x =7, y = 2}

3: y_min =5

2: m=3

1: 1 =3

(gdb)

Continuing.

Breakpoint 6, compute_skyline (points=0x603010, n=0x7fffffffe220) at skyline.c:25
25 *Nn = m;

3: y_min = 2

2: m=4

As you can see, just pressing after the first cont (inue) is the same as entering cont (inue) again.
This is handy. Sadly, you did not hit the breakpoint on line 19 again. The reason is that break 19 sets
the breakpoint on the first machine instruction in this line, which is the initialization int i = m = 1,
and this one is executed only once. In order to set the breakpoint on the comparison i < *n - 1, which
would have been helpful to inspect, you would have had to inspect the assembly code of this line and set
the breakpoint on the address of a specific machine instruction. gdb lets you do this, but this is quite a
bit beyond this introductory lab. The above sequence of breakpoints still tells you quite a bit. Somehow,
the for-loop has only 3 iterations, not 4 as expected. A closer look of course reveals the next error. The
comparison should say i < *nori <= *n - 1. Both are correct but their combination i < *n - 1

ensures that you skip the last point. Use gdb’s edit and make commands to fix the problem.

Congratulations, you now have an (almost) correct skyline function. To verify this, exit gdb:

(gdb) quit
A debugging session is active.

Inferior 1 [process 19827] will be killed.

Quit anyway? (y or n) y

and run all three tests:

$ make testl

./test_skyline inputl.txt outputl.txt
nzeh@luenose:~/1ab9% make test2
./test_skyline input2.txt output2.txt
nzeh@luenose:~/1ab9% make test3
./test_skyline input3.txt output3.txt

No output is good. This means that the programs do not report any errors and make did not detect any
non-zero exit code.

23

Step 6: Another subtle bug

I just said that the program is almost correct. Test one more corner case. Create two empty files
input4.txt and output4.txt. You can use touch to do so, provided these files do not exist already:

$ touch input4.txt output4.txt

Add the following rule to your Makefile:

test4: test_skyline input4.txt output4.txt
./test_skyline input4.txt output4.txt

Now run

$ make test4

./test_skyline input4.txt output4.txt
Wrong output size: expected @, found 1
make: **x [test4] Error 1

Hmm, you expected no point in the skyline (because there are no points in the input) but you somehow
computed a skyline with one point in it.

Use gdb to hunt down the error and correct it. When you are done, run all four tests. You should see
the output

$ make testl

./test_skyline inputl.txt outputl.txt
nzeh@luenose:~/1ab9% make test2
./test_skyline input2.txt output2.txt
nzeh@luenose:~/1ab9% make test3
./test_skyline input3.txt output3.txt
nzeh@luenose:~/1ab9% make test4
./test_skyline input4.txt output4.txt

that is, all tests should pass.

24

Step 7: Commit your work

Commit your work to SVN. The files you should commit are

25

	Overview
	The Story: Computing Skylines
	Step 1: Organizing the code
	Step 2: Using make to build the code
	Step 3: A more comprehensive Makefile
	Step 4: Test your code
	Step 5: Fix your code
	Step 6: Another subtle bug
	Step 7: Commit your work

