Parallel Processing of Pointer Based
Quadtrees on Hypercube Multiprocessors

Frank Dehné Afonso G. Ferreird Andrew Rau-Chaplii
School of Computer Science Laboratoire de I'Informatique du School of Computer Science
Carleton University Parallelisme Carleton University
Ottawa, Canada K1S 5B6 Ecole Norm. Sup. de Lyon Ottawa, Canada K1S 5B6
(613) 788-4353 69364 Lyon, Cedex 07, France (613) 788-4345
dehne@carleton.ca arc@carleton.ca
Abstract

This paper studies the parallel construction and manipulatipniofer basedquadtreen
the hypercube multiprocessor.

While parallelalgorithmsfor the manipulationof a variantof linear quadireetavebeen
previously studied in the literature, parallel pointer basedquadtreeconstructionalgorithms
havebeenpresentedin this paper,we solve the problemof efficiently constructingpointer
basedquadtreeson the hypercube,from images representedby either binary matrices or
boundary codes. In addition we show how these algorithms can be efficiently implemented
the PRAM providing new construction algorithms for both pointer based and linear quadtrees.

Furthermore, previous papers considered exclusively the pgralletssingf a variant of
linear quadtreespamelylinear quadtreesvith path encoding.In this paper,we demonstrate
that, in the parallel setting, pointer basedquadtreesare an attractive alternativeto linear
quadtrees wittpath encodingsWe presentnew efficient and practical parallel algorithmsfor
standardquadtreeoperations(suchas finding the neighborsof all leavesin a quadtree,and
computing the union/intersection of two quadtrees) for the hypercube.

Key words: parallel algorithms, image processing, quadtree, hypercube, PRAM.

1 Introduction

A quadtreeis a well known hierarchicaldatastructurefor representing binary image of
sizey/M x4/M (/M = 2 for some positive integej . The root of the quadtree represents the
entireimageand hasa value"black”, "white", or "gray" dependingon whetherthe entire

Research partially supported by the Natural Sciences and Engineering Research Council of Canada.
T Currently on leavefrom the University of Sao Paulo (Brazil), project BID/USP. Researchpartially
supported by CAPES/COFECUB (Grant 503/86-9).
+ Research partially supported by the Bell-Northern Reséaatiuate Award Program

F. Dehne, A. Ferreira, and A. Rau-Chaplin, "Parallel processing of pointer based quadtrees,” in Proc. International
Conference on Parallel Processing, St. Charles, Ill, 1991, pp. 255-262.

F D
F. Dehne, A. Ferreira, and A. Rau-Chaplin, "Parallel processing of pointer based quadtrees," in Proc. International Conference on Parallel Processing, St. Charles, Ill, 1991, pp. 255-262.

imageis black, white, or composedof both typesof pixels, respectively.lf the root is
gray, it hasfour children which are roots of quadtreesecursivelyrepresentinghe four
guadrantsof the image; otherwiseit has no children. For the remainder,we do not
differentiate between a node of a quadtaiadthe portion of the imagerepresentedby that
node.

There are two widelyisedrepresentationsf quadtreesA pointer basedquadtreeuses
the standard tree representation whilee@ar quadtreauses a linear list representationhe
linear quadtree can be representecitlyer a preordertraversalof the nodesof a quadtree
or the sortedsequencéwith respecto the preorderof the tree) of the quadtree'deaves.
Some lineaquadtreerepresentationsf the secondtype requirethat with eachleaf a code
sequence representing the path from the root to that Ist@ired(linear quadtreewith path
encoding while others store for each leaf only its size and localioeaf quadtreewithout
path encoding For an overviewand bibliographyon quadtreesand applicationswe refer
to the work of Samet ([17]).

Quadtreesare a very usefulandwidely useddatastructurefor image processing.and
guadtreealgorithmsfor a large numberof image processingaskshave beendeveloped
([27]). Sinceimageprocessings typically dataintensive,the applicationof parallelismto
such a fundamentaldata structureis of both theoreticaland practicalinterest. Recently,
researcherbavethereforealso startedto considerquadtreealgorithmsfor parallelmodels
of computation[2, 7, 9, 11, 12]. While some papers ([11,12]) consider parallel
architecturesdesigned(or reconfigured) particularly for quadtree manipulation, other
([9,2]) considerthe generalpurposearchitectureamesh-connectedomputerand PRAM,
respectively.Hung and Rosenfeld([9]) study mesh-connected¢omputeralgorithms for
constructingand manipulating linear quadtreeswithout path encoding and obtained
constructionand manipulationalgorithmswith time complexitiesof O4/M) and O@/n),
respectively.

Anothercommonlyavailableparallel archictectureand the focus of this paper,is the
fine-grained hypercubemultiprocessor(hypercubeswith a large number - more than
10,000 - of smalprocessors)The CM2 from Thinking MachinesCo. is anexampleof
an existing fine grained system.

Table 1 lists the parametershat will be usedfor the remainderof this paper.PRAM
algorithmsfor manipulatinglinear quadtreesith path encodingare studiedby Bhaskar,
Rosenfeld and Wu ([2]); the obtained results are listed in Table 3 (rightmost column).

M no. of pixels in the original image t time complexity
b length of the boundary code s total memory space
N size of theexplicit quadtree p no. of processors
N' size of thdinear quadtree with path
encoding
n size of thdinear quad tree without path |encoding
h height of the quadtree
Table 1. Overview of Parameters.
problem pointer based guadtree linear guadtree
hypercube PRAM hypercube PRAM
convertimageto Jt = O(log2M) t = O(logM) t = O(logM) t = O(logM)
guad tree
(s=p=M)
convert boundary |t = O(h log b) Jt = O(h logb) |t = O(log b (h+ }Jt = O(h logb)
code to quad tree log2logh))
(s=p=b)
Table 2. New Parallel Quadtree Construction Methods.
problem hypercube PRAM
(pointer based) (linear quadtrees)
determine neighborsof s = p = N s=p=N’
leaf nodes / t = O(h log N) t=0(h log N

compute perimeter

s=p =0O@®= O(N)
t = O(h+logN") [2]

rotate by i*90@ s=p=N

t = O(h + log N)
compute union / s=p=N s=p=N’
intersect. t = O(h log N) t=0(h logN) [2]
compute complert. s=p=N s=p=N

t = O(log N) t=0(h)

[t = O(D)] [2]
comp. area s=p=N s=p=N
/ centroid t = O(log N) t=0(log N) [2]

Table 3. Parallel Quadtree Manipulation Methods (New Results Highlighted).

T This operationis trivial for pointer basedquadtreesandlisted for completenes®nly. The hypercube
time complexity assumes O(1) time instruction broadcast (as, e.g., on the Connection Machine).

problem pointer based quadtree linear quadtree
hypercube PRAM hypercube PRAM
convertimage to |t = O(logZM) t = O(logM) t = O(log2M) t = O(logM)
guad tree
(s=p=M)
convert boundary |t = O(log b (h+ Jt = O(h logh) |t = O(log b (h+ }Jt = O(h logh)
code to quad tree |log2logh)) log2logh))
(s=p=b)
Table 2. New Parallel Quadtree Construction Methods.
problem pointer based quadtree linear quadtree
hypercube PRAM hypercube PRAM
determine s=p=N s=p=N s=p=N s=p=N’
neighbors of all Jt = O(h log N) |t = O(h) t = O(h logN' t=0(h log N
leaf nodes / log?logN)
compute perimeten s=p=0O(#)= s=p =04z
O(N) O(N)
t = O(h logN' t = O(h+logN") [2]
logZlogN' +
log?N' log2log N")
8
comp. area s=p=N s = N, s=p=N s=p=N'
/ centroid t = O(log N) p = N/log N, t = O(log N") t=0(log N) [2]
t = O(log N)
rotate by i*90@ s=p=N s=p=N
t = O(h+ log N Jt = O(h+log N)
log2logN)
compute union/ Js=p =N s=p=N s=p=N’ s=p=N’
intersect. t = O(log N (h |t = O(h+log N) |t=0O(h logN' t=0(h logN") [2]
+ log?logN)) log?Zlog N') 8
compute s=p=N s=p=N s=p=N s=p=N’
complemT t = O(log N) t = O(1) t = O(h logN' t=0(h)
[t = O(1)] logZlog N") § | [2

Table 3. Parallel Quadtree Manipulation Methods (New Results Highlighted).

The time and space complexities listed in Tabler3nanipulatinglinear quadtreeswvith

pathencodingon a hypercubeare obtainedfrom [2] by using standardPRAM simulation

on a hypercube as describedby Nassimiand Sahni([13]), togetherwith Cypher and

Plaxton's deterministic hypercube sorting algorithm ([4]).

& Follows from [2] by standard PRAM simulation on a hypercube as described in [12], together with [4].
This operationis trivial for pointer basedquadtreesand listed for completenes®nly. The hypercube
time complexity assumes O(1) time instruction broadcast (as, e.g., on the Connection Machine).

In this paper, we study two problem areas which remained unsolved in the previous
literature.

In the above mentionedpapersthere existed,for the hypercubeand PRAM, parallel
guadtree manipulation algorithms, butperallelquadtreeconstructionalgorithms(neither
for pointer basednor for linear quadtrees)were given. Such constructionalgorithms,
which are obviously necessary to use quadtrees on paediel machine are presentedn
this paper.We describealgorithmsfor convertingimagesrepresenteckither by a binary
array or a boundary code into pointer based as well as linear quadtrees. Table 2 summarizes
the obtained results.

Furthermore, all previous papers studied only the pagaitelessingf linear quadtrees
with path encoding The reasonmight be that a linear quadtree being just a set of leaf
nodes,seemgo be easierto handlein the parallel setting, comparedto maintainingand
manipulating a pointer structure necessary for a pointer lopsatiree We show however
that pointerbasedquadtreesare an efficient alternative.Iln fact, the parallel manipulation
algorithms for pointer basedquadtreespresentedn this paper improve, in terms of
time/spacegoroduct,on the previouslypresentednethods.In addition, they exhibit better
time complexitieswith samenumberof processorsin all but degenerateases. Table 3
summarizes the obtainedsults.Note that, the algorithmsin [2] apply to linear quadtrees
with path encoding. In the expected case, the hdigbf,the quadtreas O(log N) ([1, 8,
10]). Hence,N=0O(N"); i.e., the linear and pointer basedquadtreeshave, asymptotically,
the samespacerequirementin this case,we obtainimprovementsn the time complexity
for several problems, su@s computingthe neighborsof all leaf nodesandthe perimeter
of an image [hypercub@(h log N) vs. O(h log2N log2log N), PRAM: O(h) vs. O(h log
N)] or computing the union/intersectiari two quadtreeghypercube:O(log N (h+log?log
N) vs. O(h log2N log2log N), PRAM: O(h+log N) vs. O(h log N)]. In the worst case
h=0O(N), the linear quadtree with path encoding needs to store one path re@({hjrgts,
while the pointer based quadtree ne®@y pointers ofO(log h) bits each; thais, N=O(N'
log h). In this case,we obtaina time spacetrade-off betweenthe abovetime complexity
improvementsandincreasedstoragefor pointerbasedquadtreealgorithms.Note that, for
the hypercube,the spaceincreasesby a factor smaller than the time complexity
improvement, and for the PRAM both factors are equivalent.

The remainderof this paperis organizedas follows. In Section2, we discusssome
preliminariesconcerningthe modelsof parallel computationand the dynamic multi-way
searchparadigm.In Section3, we presentefficient hypercubeand PRAM algorithmsfor

constructinga (pointerbasedor linear) quadtreefrom a binary image or from an image
representedby its boundarycode.In Section4, we introduceefficient parallel hypercube
and PRAM algorithms for manipulating pointer based quadtrees.

2 Preliminaries

Before presentingour quadtreealgorithms, we introduce some notationsand previous
resultswhich will be usedin the remainder.We start by defining the parallel models of
computation we will address henceforth.

2.1 Hypercube Multiprocessor and PRAM

A hypercube multiprocesss a setP;, ..., Pp of p processorgonnectedn a hypercube
fashion;i.e., P; andP; are connectedby a communicationlink if andonly if the binary
representationsf i and|j differ in exactly one bit. In a hypercube,thereis no shared
memory. The entire storagecapability consistsof constantsize local memories,one
attached to each processor (s=0(p)).

A CREW PRAM consistef asetPy, ..., Pp of p processorswith constantsize local
memories, connected to a shared memory of size arditnary numberof processorgan
read concurrently from the same shared memory location, but concurrerdagetsesare
not possible.

2.2 Storing Pointer Based Quadtrees on a Hypercube Multiprocessor

While storing a pointer based quadtree on a PRAM is simple, because of its shared memory
which canbe usedin the sameway as for a standardsequentialmachine,we require a
schemefor distributinga quadtreeover the local memoriesof a hypercube.Considerthe

level order numberingof the nodesof a quadtreeas indicatedin Figure 1. For the
remainderwe will assumethat eachnode with level order numberi, togetherwith the
attached data and pointers to its children, is stored at proégssor

Figure 1. Level Order Numbering of the Nodes of a Quadtree

2.3 Multi-Way Search on a Tree

Let T = (V, E) be a tree of sizk, heighth, and out-degre®(1), and letJ be a universeof
possible search queries ©nA searchpathfor a queryq O U is a sequencgath(q)=(v1,
...,Vp) of h vertices ofT defined by asuccessofunctionf: (VO {start}) x U O V; i.e., a
function with the property thdstart,q) [0 V and for every vertex(1V, (v, f(v,q)) O E or
(f(v,q), v) O E. A search proces$or a queryq with searchpath(vy, ..., V) iS aprocess
divided into h time stepst;<t,<...<t;, suchthatat time t;, 1<i<h, thereexistsa processor
which contains(in its local memory)a descriptionof both the query q and the nodev;.
Note that, we do not assume that the sepathis givenin advanceWe assumehatit is
constructed ‘online’ during the search by successive applications fofritteon f. Givena
setQ = {qs1,...9m} O U of m queries,m=0(k), then the multi-way search problem
consists of executing (in parallel) allsearch processes induced byrthgueries.

The bestway to visualize this processis to depict eachsearchprocessas a pebble,
representing the respective query and moving through th& tr&gpebblemay only move
along edgesof T, but it it cantraversethemin both directions. The multi-way search
problemconsistsof m suchpebblesmoving simultaneouslythroughthe tree. Note that,
each node of the tree may be ‘visited’, at any time, by an arbitrary number of pebbles.

On a PRAM (of size max{k,m}) multi-way searchcan be easily implementedin time
O(h). Eachquery (pebble)is simply representedby one processornavigatingit through
the tree. The PRAM'’s concurrent read capability ensures that queries visiting the same node
do not interfere.

In subsequent sections, queries will also be referredrteeasages

For hypercube multiprocessors, it wasownin [6] thatthe multi-way searchproblem
can be solved in time O(h log (max{k,m})) on a hypercubeof size max{k,m}. The
algorithm presented there applies to a class of graphs catlecedh-level graphs(see[6]
for a precisedefinition) which includesthe classof all treeswith constantdegree.The
global structure of this algorithm (appliedttee specialcaseof searchtrees)is asfollows:
Initially, thetreeis storedasindicatedin Section2.2. The m searchqueriesare storedin
arbitrary order (with each processor storing at most one queryjnbarch processes for
them queries,,...,0n are executed simultaneouslyhiphasesgeachrequiringtime O(log
(max{k,m})). Eachphasemovesall queriesone stepaheadn their searchpaths.In each
phase the queriesare permutedsuchthat they are sortedwith respectto the level order
numberof the respectivenodethey want to visit next. Furthermorea copy of the search
treeis createdand its nodesare permutedsuch that, at the end of each phase,each
processor containing a quegyalso stores a copy of the node the query wants tonasit
See [6] for a full description of the algorithm.

Consider the problem of changing the ffear the seQ of queriesduring the execution
of a multi-way search. That is, during the sedrabre precisely,at the end of eachphase
of the algorithm outlined above) leaves may be add@dgabtrees may be deleted frGm
and queries may duplicate or delete themselves. This prablesferredto asthe dynamic
multi-way search problenin [5] it has been shown that this problem can be solved, for the
hypercube, such that the time complexity of each phase ©@id (max{,m})). Thatis,
the time complexity of the entire multi-way searchprocedurdor the dynamiccaseis still
O(h log (max{k,m})). For the PRAM, the dynamicversionalso requirestime O(h log
(max{k,m})). The problemhereis thatthe assignmenbf processorso new queriesand
the assignmenbf storagespaceof deletednodesto newly createdones may require a
partial sum operation for each phase of the algorithm, which slows dowtativesolution
by a factor ofO(log (max{k,m})).

3 Constructing Quadtrees from Images and Boundary Codes

3.1 Quadtree from Binary Image

Consider a/M x4/M binary image stored on a hypercube (Witiprocessors) in row-major
numbering (see Figure 2a). That is, proceBsatores the pixel with row-major number

1 (2 (3 |4 1 (2 |5

516 (7 |8 314 |7 |8
9 |10(11]12 9 |10(13|14
13(14115]16 11(12(15|16

@) (b)
Figure 2. (a) Row-Major Numbering (b) Shuffled Row-Major Numbering.

The following is an outline of a hypercubealgorithm for computinga pointer based

guadtreefrom such a binary image representation(The implementationdetails will be

presented afterwards.)

(1)
)

®3)
(4)

()

For each pixe(in parallel)its shuffled row-majornumber(asindicatedin Figure
2b) is computed.
All pixels are sorted by shuffled row-major number.
A complete 4-ary tree, with the sorted sequence of pixels as leaves, is built.
From eachleaf a messageas sentalong the path to the root of the tree. The
messagesnove synchronouslyupwardsfrom level to level. At eachlevel, the
following is executed:
If all four messageseachinga nodex comefrom black {white} children,
thenx is set to black {white} ands childrenare marked"to be deleted".If
the messageseachingx arefrom childrenwith different color, x is setto
gray.
All nodes marked "to be deleted" are deleted rémeainingnodesare compressed
to form a consecutive sequence, and all pointers are updated.

Theorem 1 The pointer based quadtree representation¢Ma x4/M binary image can be
computed in time O(IGy1) on a M processor hypercube, i.e. s=p=M.

Proof: Fromthe definition of quadtreest follows that the tree generatedoy the above

algorithm is the correct quadtree. What remainsgehownis that the abovestepscanbe

implementedwithin the claimedtime complexity bounds.Step 1 requiresonly the local

computationof the shuffled row-majornumberof the respectivepixel at eachprocessor.
For ay/M x4/M image, this take®(log M) local computationsteps.Step?2 requirestime

O(log M) as it can beealizedby a single Bit-Permute-Complemerdperation[15]. Step3

can be implemented Hyuilding the treelevel by level, startingwith the leaves(which are

given). Since it is a completetree, at each stagethe addressesf the nodes of the
subsequentevel can be immediately computed.Thus, Step 3 requirestime O(log2M)
becausesachlevel can be constructedusing a concentrateand distribute operation[13].
Step4 is a multi-way searcbperationasoutlinedin Section2.3, with travelingmessages
represented by query processes. Hencaegitirestime O(h log M)=0(log2M). Note that,
Step 4 does not change the topology ofttbe but marksonly the nodesto be deleted.In
Stepb, the markednodesare deletedby compressinghe sequencef the remaining(non
marked) nodes and the point¢asidresseferencedetweentree nodes)are updated.This
canbe accomplishedn O(log M) time using the updateTree operationfrom [BRANCH
AND BOUND] O

Linear quadtrees withoyttathencodingcanbe constructedn essentiallythe sameway
by markingin Step4 alsogray nodesas"to be deleted".For linear quadtreeswith path
encoding, we also need to compute (between Steps 4 and 5) the path encastin|éaf
by applying one additional multi-way search procedure.

Corollary 1 The linear quadtree representation (with or without path encoding)/®fl ax
/M binary imagecan be computedn time O(log2M) and O(log M) on a hypercubeand
PRAM, respectively, with s=p=M.

3.2 Quadtree from Boundary Code

Consider an imagedescribed by aoundarycodeof lengthb; i.e., asequenceay, ..., a,

of b boundary elemenis[{r,l,u,d} as shown in Figure 3 (see [14]). The imdgeonsists
of the entire areainside the boundaryline defined by the boundarycode. The unit size
pixels ofl that are adjacent tihe boundaryline are calledboundarypixels (seeFigure 3).

For the remainder, |& denote a smallest (isothetic) square contaihitpte that§ hasa
width of at mosb.

10

starting point boundary code

u d
boundary pixel
u d
u /\/ d.
u \ ‘ d
u d
1y d
u d

Figure 3. Boundary Code and Boundary Pixels of an Image

Our parallel algorithm for computing the pointer based quadtree frobotiredarycode
consists of two phases, each of which is outlined below.

Phase 1 computes a quadtree template representinthetigundarypixels of 1. What
remains to be done in Phasés2he creationof leaf nodescorrespondingo the black and
white areainside and outsidethe boundaryline, respectively.The missingchildren of an
internal node, at the end of Phase 1, will be referred tatasent childrerof x. Note that,
all absent children are leaves.

Phasel:

(1) For eachboundaryelement,its absoluteaddress(in §) is computed,and the
adjacent boundary pixels are created (see [14]).

(2) The shuffled row-major numberof each boundarypixel with respectto § is
computed.

(3) All boundary pixels are sorted with respect to their shuffled row-major number.

(4) A quadtreewith the abovesequenceof boundarypixels as leavesis built. For
nodes with less than four children, for each missing @nddemarked"absent"”

is created.

In orderto build the final quadtreefrom the templatecreatedn Phasel, we recall the

following from [14].

Lemma 1 ([14]) After Phase 1, if an absent child of a node is black {white}, theotladr
absent children of a node are black {white}.

11

Lemma 2 ([14]) After Phase 1, consider a node, x, with at least absentchild. Choose

an absent child R adjacent to a non-absent (black or gray) sibling Q, and a non-absent leaf g

in the subtree rooted at Q which is adjacent to R. If g is white themRite. If q is black

and adjacent to the boundary line, then R is white ibihiendaryline is betweeng andR,
and black if the boundary line does rsgparatethem. If q is black and not adjacentto the

boundary line, then R is black.

The following outlines the remainder of the algorithm.

Phase:

(1)

(2)

From eachleaf, a messagéas sentto the root of the tree. The messagesnove
synchronouslyupwardsfrom level to level. For eachnode, a value Nodetypeis
determinedwhich indicatesfor eachside of its respectivequadrantwhetherit is
completely inside the imadecompletely outside df or intersected byhe border
line (see also [14])Note that, the Nodetypevalue for every boundarypixel (leaf
of template quadtree) is given; for evemernalnode, given the Nodetypevalues
of all its children, itdNodetypevalue can be easily determined in constant time.
For eachinternal node x with at leastone absentchild, the absentchildren are
created and their values are determined as follows:

(@) An absent chilR adjacent ta non-absenthild Q is selectedThe color of
R is determinedaccordingto Lemma 2. However, the color of R is
determined directly from thidodetypevalue ofQ rather than fronthe leaf q
referred to in Lemma 2. All other absent childrex @fre assigned¢he same
color askR (Lemma 1).

(b) The Nodetypevaluesof the previously absentchildren are determined.
Finally, theNodetypevalue ofx is computed.
From eachleaf, a messagas sentto the root of the tree. The messagesnove
synchronouslyupwardsfrom level to level. (This is ensuredby wait loops for
messagestarting at leavesof smaller depth.) At eachlevel, the following is
executed:
If all four messageseachinga nodex comefrom black {white} children,
thenx is set to black {white} andts childrenare marked"to be deleted".If
the messages reachixgre from childrerwith different color, thenx is set
to gray.

12

(3) All nodes marked "to be deleted" are removed, the remaining nodes are
compressed to form a consecutive sequence, and all pointers are updateed.

Theorem 2 The pointer basedquadtreerepresentatiorof a binary image describedby a
boundary code of length b can be computed in time O(log b (&edph)), with s=p=Db.

Proof: The correctness of the algorithfollows from [14]. Whatremainsto be shownis
that the individual steps listed in the above two phases can be implemented wigimibd
time complexity. We start by describiaghypercubeamplementatiorof Phasel. For Step
1, the x-coordinates of the absolute addressesomputedby assigninga valuel, -1, 0,

and 0 to the boundary elements r,l,u,d, respectively, and computing the partial $hisis of
sequenceAll y-coordinatesare computedanalogously.For eachboundaryelement,the
creation of the boundary pixels requiresonly information about the directly adjacent
boundaryelements;otherwise,it is a local O(1) time operation.Hence, Step 1 can be
executedin O(log b) time. Step 2 requiresO(log b) local computationsteps at each
processor Step 3 requirestime O(log b log2log b) [4]. Step4 can be implementedby
building the treelevel by level, startingwith the leaves(which are given). At eachlevel,
every node (initially leaves) examinesits three neighborsto the right and left and
determinequsing the shuffled row-major numberingand currentlevel information) with
whom a common ancestor is to be created. This can be implement&{lagftp) time per
level by using a constantnumberof partial sumaswell as concentrateand distribute [13]
operations. At the beginning Bhase?, we have a quadtréemplaterepresentingnly the
boundary pixels of the imadeThe nodes corresponding to the black and warainside
and outside the boundary line, respectivalgnow createdby successivelynamicmulti-
way searchproceduresin Stepl, a dynamicmulti-way searchprocedures usedto add
and update the absent childre@{h logb) time. Step2 and Step3 arethe sameas Step4
and Step 5, respectively,of the algorithm in Section 3.1. Therefore,Step 2 can be
implemented in tim®(h logb) ; Step 3 requires tim@(log b). O

Linear quadtrees withoyttathencodingcanbe constructedn essentiallythe sameway
by markingin Step2 of Phasel alsogray nodesas"to be deleted".For linear quadtrees
with path encoding, we also need to compute (betveps2 and 3 of Phase?) the path
encoding for eackeaf by applying one additionalmulti-way searchprocedure Therefore,
the linear quadtreerepresentatior{with or without path encoding)of a binary image

13

representedby a boundarycodeof lengthb canalsobe computedn a hypercubewith b
processors in tim&(log b (h + log?log b)).

4 Operations on Quadtrees

4.1 Finding Neighbors in Quadtrees and Computing Region Properties

One ofthe main advantage®f usingthe pointerbasedquadtreas that, oncethe quadtree
has been constructed, parallel searching algorithms on quadtrees can be easilyradapted
the existing sequential methobg using the dynamicmulti-way searchtechniqueoutlined

in Section2.3. One of the mostimportant building blocks of quadtreeapplicationsare
neighborfinding techniquesFor a leaf x representinga quadrantX, a neighborof x is a
leaf y representinga quadranthatis adjacento X (with respecto the image)and has at
leastthe samesizeas X. The multiple neighborfinding problem consistsof finding the
neighbors of all leaves of the quadtree.

Theorem 3 Given a pointer based quadtree of size N staned hypercubewith s=p=N,
then the multiple neighbor finding problem can be solved in time O(h log N).

Proof: The sequentiaimethoddescribedn [16] for finding the neighbory of one single
leafx traverses thé&reefrom x upwards,along path r(x), to the lowestcommonancestor
of x andy; thenit descendslownwardsto y by usingthe "mirror image" of the upwards
path 7(x). The main problemwith parallelizing this methodto parallel traversalsfor all

leaves of the tree, using multi-way search, is thaeasageisedin multi-way searchmay
only be of constantsize and, thus, cannotstorethe path 7(x). Assumew.l.0.g. that the

right neighborof x is to be determined.Let a denotethe right border of the quadrant
associatedvith x, andlet 8 denotethe line definedby extendinga. We observethat a
guery can also be routed from a leaf x to its right neighbory (along the samepath as
describedabove)as follows: The query movesupwardsfrom x until it reachesa node
whose associated quadrant intersgciBhen, itdescendslownwardsby selectingalways
the child whose associated quadrant is adjacent.tblence,a query processo be routed
from x to its neighboy needs tastoreonly a and 8. With this, multiple neighborfinding

reduces to multi-way search and, thus, the theorem followdd

14

Once the neighborsof eachleaf in all four directions have been determined,the
calculation of, e.g., the perimeter of the image follows immediately (see [2]).

Corollary 3 Given a pointer based quadtreeof size N stored on a hypercubewith
s=p=N, then the perimeter of the associated image can be computed in time O(h log N).

Remark. Notice that, numerousregion propertiesof imagessuch as the area or
centroid, which are simply associative functions of the leaves (and do nateighboring
information), can be immediately calculatedby partial sum operations(see[2]). This
requires timeéd(log N) on a hypercube wits=p=N .

4.2 Rotating Quad Trees By 90°

Given a pointer based quadtiEdhe following algorithm computes the quadtfééor the
image ofT rotated by 99on a hypercube or PRAM, wig¥p=N.

(1) For each node, the position of the rotated associated quadrant is computed.

(2) For eachrotatedquadrant,the shuffled row-major number(with respectto the
partitioning into quadrants of the same size) is computed.

(3) The nodesare sorted by major key level and minor key shuffled row-major
number

(4) All nodes are resorted to their original position in the old tEaehnodesendsits
new address to its parent.

(5) All nodesare againsortedby major key level and minor key shuffledrow-major
number

Theorem 4 Given a pointer basedquadtreeT of size N stored on a hypercubewith
s=p=N, then the quadtree T' representing the image, assoaiathdr, rotatedby 90° can
be computed in time O(h+log N dgg N).

Proof: The correctness of the algorithm follows from the observation that if aniediee
parent of a node in T then the node i’ representing the rotated quadrant «f alsothe
parentof the nodein T' representinghe rotatedquadrantof w. The computationof the
shuffled row-major numberin Step 2 requires O(h) local computationsteps at each
processor.The remainderof the algorithm reducesto a constantnumber of sorting
operations. Therefore, the time complexities follow. O

15

4.3 Constructing the Union and Intersection

The union (intersection)of two quadtreesl'a and Tg is definedas the quadtreeTa s
(TanB) representinghe image composedof the bitwise OR (AND) of the two original
images. In this sectionye studythe parallelcomputationof the union andintersectionof
two pointerbasedquadtrees. Notice that the complementof an image representedy a
pointer based quadtreanbe trivially computedn O(1) time. Below, we introducesome
definitions that will be used in the remainder of this section.

A treeTa+p Is called aroverlayof Ta andTg if it is the smallest 4-ary treguchthat for
each node of T or Tg there exists a nod¥v) in Ta+g representinghe sameimagearea
(assumingthat Ta+g representsan image subdivision defined in standard quadtree
fashion). The combinedevel order numberingof Ta and Tg is defined as follows: For
eachnodev of Tpa or Tg, the combinedlevel order numberna+g(Vv) is the level order
number of&V) in Ta+g. Theshuffled row major numbesf a nodev of Ta (or Tg) is the
shuffled row major number of the associated quadrant with respect to the subdivision of the
image plane into quadrants of the same size.

@
() &) @ 62 6 €Y €

proc.40|1|2(3|4|5([6]|7|8(|9]10]11f12[13 |14 |15 |16
Al]l A2| A3l A4l A5 A6l A7| A8l A9 A10 [A1l | A12 | A13
Bl| B2| B3| B4| B5 B6| B7| B8| BY| B10 | B11 | B12 | B13
levelf1 122|223 (3]33|3]|3(3]3[|3 |3 |3 |3

content

Figure 4. Combined Level Order Numbering Scheme.

We assume that both quadtrees are stordevayorder numberasindicatedin Section
2.2. As a preprocessingye convert this storageschemeinto a combinedlevel order
numberingschemewhere every node v of Tp or Tg is stored at processornumber
na+s(Vv). Note that, every processor stores at least one node, but at most two nodes, one of
each tree. The new relative order of the nodes of one tre€as@ythe same as their order

16

in the initial level order numbering @}. The combined level order numberisghemecan
be obtainedasfollows: All nodesare sortedby major key level (height within their tree)
and minor key shuffledrow major number.For any two nodeswith the samemajor and
minor keys stored in two adjacent proces$p@andPi+1, the node iPj+1 is movedto P;.
Finally the contents of the processars shifted leftwardsso that processorsvithout data
are avoided.

Given this storage scheme for the two quadtfaesnd Tg, the following is an outline
of a parallel algorithm for computingthe quadtreeT og. Our algorithm uses dynamic
multi-way search(see Section2.3) with three different types of messages:compare”,
"copy" and "update" messages.

(1) From eachof the roots of To and Tg a wave of "compare" messagess sent
towardsthe leaves.Thatis, a "compare"messages sentto eachroot and, each
node receiving a message, duplicates it and sends one to each child (within its own
tree). Messages move synchronoudbyvnwardsfrom level to level. During this
process, a new tréeis created, which will subsequently be converted Tiatog.
At each level, the following is executed:

(@) Eachnode x receiving a "compare" message,comparesitself with the
respectivenodey (representinghe sameimagearea)of the othertree. The
nodey is stored at the same procesB@s nodex andreceivesa "compare”
message at the same time as nodees. Unlesg andy are the rootef Ta
and Tg, respectively,let paren{x) and paren{y) denotetheir respective
parents.Note that, paren{x) and parenty) are both "gray" nodesstoredat
the same processBt and, previously, received a "compareéssagat the
same time.

Casel: x andy are both "gray":

A new"gray" nodez for T representinghe samequadrantas x andy is
created and stored at processorP. Note that, paren{x) and parenty)
previously created a "gray" nod&or T. This nodez' is made thgarentof
zinT.

Case2: xoryis "black™:

A new "black" nodez for T representinghe samequadrantas x andy is
createdand storedat processolP. The "gray" nodez' createdby parentx)

17

andparenty) is madethe parentof z in T. The two "compare”"messages
which reached andy are not forwarded but deleted.

Case3: One nodex ory, is gray and the other node is white:

A new"gray" nodez for T representinghe samequadrantas x andy is
createdand storedat processoiP. The "gray” nodez' createdby parentx)
andparenty) is madethe parentof z in T. The "compare"messagevhich
reached the "white" node is deletdthe "compare"messageavhich reached
the "gray" node, is changed to a "copy" message, duplicatedo@varded
to all children.

Cased: x andy are both "white™:

A new "white" nodez for T representinghe samequadrantas x andy is
createdand storedat processolP. The "gray" nodez' createdby parentx)
andparenty) is madethe parentof z in T. The two "compare”"messages
which reached andy are not forwarded but deleted.

(b) Eachnodex receivinga "copy" messagdin the other tree there exists no
node y representing the same quadrargatesa new nodez for T with the
same color ag and representing the sameadrant.The nodez' createdby
paren{x) and paren(y) is madethe parentof zin T. A "copy" messages
sent to each child, or the message is deletedia leaf.

(2) Fromeachleaf an"update"messages sentto the root of the tree. The "update”
messagesove synchronouslyupwardsfrom level to level. (This is ensuredby
wait loopsfor messagestarting at leavesof smallerdepth.) At eachlevel, the
following is executed:

If all four "update”"messageseachinga nodex comefrom black {white}
children,thenx is setto black {white} andits children are marked"to be
deleted". If the "update" messagegeaching x are from children with
different color x is set to gray.

(3) Allnodes marked "to be deleted" are deleted yémeainingnodesare compressed
to form a consecutive sequence, and all pointers are updated.

Computing the intersection of two pointer based quadtrees is analogous. Atifstieps
above algorithm remain unchanged except for Cases 2, 3, and 4 where abldtikhite"
should be exchanged.

18

Theorem 5 Given two pointer based quadtrees with a total number of N nodes stored on a
hypercube or PRAM with s=p=Nhenthe union {intersection}of thesequadtreescan be
computed in time O((h+ I&pg N) logN) andO(h+log N), respectivelywhereh denotes

the maximum height of the two trees.

Proof: In order to observe the correctnesshafalgorithmwe first studythe intermediate
tree T created at the end of Step 1. Considemwaesx andy in Ta and Tg representing
the same quadrant. Then, a nadeT is created in Stefha (a "compare"messageeaches
x andy), andit is easyto seethatthroughCasesl to 4 the right color, representinghe
union {intersection} ofx andy, is assigned ta. Consider, on the other handnadex for
guadrantX in, say,Ta with no node inlg representing the same quadrant. THgnhasa
leafy for a quadran¥ containingX. Letx' be the ancestor afrepresenting quadralt If
Y is "black” {"white"} then no node needs be createdn T, which is guaranteedy the
deletionof the "compare"messageseachingx’' andy (Stepla, Case2). If Y is "white"
{"black"} then the entiresubtreerootedat X' hasto be copiedinto T. This is achievedby
the "copy" messages startekaStep la, Case 3 and Step 1b).

In orderto prove the claimedtime complexity, we first observethat the preprocessing
reducesto a sorting operationfollowed by a concentratgf13] and partial sum for the
hypercube and PRAM, respectively. Hence, its time complexi®(leg N logZlog N) and
O(log N) on the hypercube and PRAM, respectivdllge combinedlevel order numbering
scheme used to store the trégsTg, and T allows simultaneousnulti-way searchon all
threetrees,becauseéla, Tg, andT are subtreesof Ta+g, and all nodesare storedwith
respect to their level order numberTin:g (see Section 2.2 and 2.3). Hence, Step lbean
implementedbn a hypercubeusing the dynamic multi-way searchprocedureoutlined in
Section 2.3. That is, Steprequirestime O(h log N) on the hypercubeWe observethat,
during Stepl, atanytime no treenodeis visited by morethan one messageTherefore
advancing all messages from one level of the tree todkievel canbe implementedpn
the PRAM, in timeO(1). Thisis dueto the fact that for assigningprocessorso messages
we do not requirea partial sumoperationasin the generalcase,but we can use a fixed
schemewhereevery processois assignedo one node and responsiblefor the message
visiting that node. Hence, Step 1 requirestime O(h) on the PRAM. Steps2 and 3 are
equivalent to Steps 4 and 5 of the algorithm in Sec8ah Hence,from Theoreml, their
time complexity i90((h+ log?Zlog N) logN) andO(h+log N) on the hypercubeand PRAM,
respectively. 0O

19

5 Results for the PRAM

In this Sectionwe show how the algorithmsfor hypercubesescribedin the previous
Sectionscan be implementedin a CREW PRAM, yielding improved algorithms for
constructionand manipulationof quadtreesWe first recall the complexitiesof the main
operations used in the previous algorithms and then state our results.

On a PRAM, as it was pointed out in Section 2.3, the time complexity of m-way search and
dynamic m-way search fon queries on a treef sizek andheighth is O(h) and O(h log
(max{k,m})), respectively.Sortingand prefix-like operationstake O(log p) time with p
processors, and Concurrent Read and RanfloressWrite operationgrequireO(1) time.
Therefore,

Corollary 2 The pointer basedquadtreerepresentatiorand the linear quadtree(with or
without pathencoding)representatiorof a binary imagedescribedby a boundarycodeof
length b can be computed in time O(h log b) on a PRAM, with s=p=Db.

Corollary 3 Given a pointer based quadtree T of sizetdfedon a PRAM with s=p=N,
then

«the multiple neighbor finding problem can be solved in time O(h).

«the perimeter of the associated image can be computed in time O(h).

ethe quadtreeT' representingthe image, associatedwith T, rotated by 90° can be
computed in time O(h+log N).

Corollary 5 Given two pointer based quadtrees with a total number mddesstoredon

a PRAM with s=p=N, then the union {intersection} of thgaadtreescan be computedn
time O(h+log N), where h denotes the maximum height of the two trees.

20

5 Conclusion

In this paperwe havedemonstratedhat, for parallel processingpointer basedquadtrees
are an attractive alternativeto linear quadtreesWe presentedefficient hypercube(and
PRAM) algorithms for constructing pointer based (and also lirpaagitreesgitherfrom a
binary image or from a boundaryrepresentationWe also presented for pointer based
guadtreesefficient parallel manipulationalgorithmssuch as finding the neighborsof all
leaves in a quadtree and computing the union/intersection of two quadtrees.

All the proposedalgorithms are suitable for implementationon existing hypercube
multiprocessorsystems,like the ConnectionMachine CM2. Previous experimentswith

actualimplementationsof dynamic multi way searchon this machine suggestthat the
parallel quadtree algorithms describedhis papershouldbe efficient in practice,not just

asymptotically.

Refer ences

[1] J. L. Bentley and D. F. Stanat,"Analysis of range searchesn quad trees,"
Information Processing Letter¥ol. 3, No. 6, 1975, pp. 170-173.

[2] S. K. Bhaskar,A. Rosenfeld,and A. Y. Wu, "Parallel processingof regions
representedby linear quadtrees,” Computer Vision, Graphics, and Image
ProcessingVol. 42, 1988, pp. 371-380.

[3] R. Cole, "Parallemergesorting"”, SIAM J. of Computing Vol. 17, N° 4, 1988,
pp. 770-785.

[4] R. Cypher and C. G. Plaxton, "Deterministic sorting in neladgrithmictime on
a hypercubeand relatedcomputers,“to appearin Proc. ACM Symposiumon
Theory of Computingl990.

[5] F. Dehne,A. Ferreira,andA. Rau-Chaplin,'Parallelbranchand bound on fine
grained hypercube multiprocessors," to appe&aiallel Computing
[6] F. Dehneand A. Rau-Chaplin,"Implementing data structureson a hypercube

multiprocessorand applicationsin parallel computationalgeometry,"Journal of
Parallel and Distributed Computing/ol. 8, 1990, pp. 367-375.

[7] S. Edelman and E. Shapiro, "Quadtreesin concurrent prolog,” in Proc.
International Conference on Parallel Processia§85, pp. 544-551.
[8] R. A. Finkel andJ. L. Bentley,"Quad trees- a datafor retrieval on composite

keys,"Acta Informatica Vol. 4, No. 1, 1974, pp. 1-9.

21

[9]

[10]

[11]

[12]
[13]
[14]

[15]

[16]

[17]

Y. Hung andA. Rosenfeld,"Parallelprocessingf linear quadtreeson a mesh-
connectedcomputer,” Journal of Parallel and Distributed Computing Vol. 7,
1989, pp. 1-27.

K. J. Jacquemain,"The complexity of constructing quad-treesin arbitrary
dimensions,'in Proc. 7th Conferenceon GraphtheoreticConceptsin Computer
Science (WG81)1982, J. Miuhlbacher (Ed.), pp. 293-301.

M. Martin, D. M. Chiarulli, andS. S. lyengar,"Parallelprocessingpf quadtrees
on a horizontally reconfigurable architecture computing system," in Proc.
International Conference on Parallel Processia§86, pp. 895-902.

G.-G. Mei andW. Liu, "Parallel processingfor quadtreeproblems,”in Proc.
International Conference on Parallel Processia§86, pp. 452-454.

D. Nassimi and S. Sahni, "Data broadcastingin SIMD computers,” |IEEE
Transactions on Computergol. 30, No. 2, 1981, pp. 101-106.

H. Samet, "Region representation: quadtrees from boundary codes,"
Communications of the AGWol. 23, No. 3, 1980, pp. 163-170.

S. Ranka and S. Sahni, Hypercube algorithms with applications to image
processingand patternrecognition Bilkent University Lecture Series,Springer-
Verlag New York Inc., 1990.

H. Samet,"Neighbor finding techniquesfor imagesrepresentedy quadtrees,"
Computer Graphics and Image Processivgl. 18, No. 1, 1982, pp. 37-57.

H. Samet,"The quadtreeand related hierarchicaldata structures,"Computing
SurveysVol. 16, No. 2, 1984, pp. 187-260.

22

